

Why study flavor physics?

- ♦ Most extensions of the Standard Model contain new CP-violating phases and new quarkflavor changing interactions
 - ♦ ⇒ We expect new physics effects in the quark flavor sector
- ◆ The flavor sector is sensitive to physics at very high scales
 - New particles will typically appear in loop-level processes such as neutral kaon mixing:

→ We may see evidence for new physics in the flavor sector before we produce non-Standard Model particles directly at the LHC!

Lattice QCD and precision flavor physics

 Experiments have been pouring out data to pin down the CKM matrix elements but lattice calculations are needed to interpret many of their results

- Schematically, EXPT. = CKM × LATTICE
- ◆ In order to accurately describe weak interactions involving quarks, must include effects of confining quarks into hadrons:

- Typically absorb nonperturbative QCD effects into quantities such as decay constants, form factors, and bag-parameters which we must compute in lattice QCD
- Precise lattice QCD calculations of hadronic weak matrix elements are critical to maximize the scientific output of the experimental high-energy physics program

Lattice QCD constraints on the CKM matrix

- ◆ "Gold-plated" lattice processes allow the determination of most CKM matrix elements:
 - ♦ 1 hadron in initial state; 0 or 1 hadron in final state
 - Stable (or narrow and far from threshold)

$$egin{pmatrix} oldsymbol{V_{ud}} & oldsymbol{V_{us}} & oldsymbol{V_{ub}} \ oldsymbol{\pi}
ightarrow l
otal & oldsymbol{V_{ub}} & oldsymbol{V_{ub}} \ oldsymbol{W_{cd}} & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{D}
ightarrow l
otal & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{D}
ightarrow l
otal & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{D}
ightarrow l
otal & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{V_{cb}} & oldsymbol{V_{tb}} \ oldsymbol{V_{td}} & oldsymbol{V_{ts}} & oldsymbol{V_{tb}} \ oldsymbol{V_{td}} & oldsymbol{V_{ts}} & oldsymbol{V_{tb}} \ oldsymbol{V_{tb}} & oldsymbol{V_{tb}} \ oldsymbol{V_{cb}} & oldsymbol{V_{cb}} \ oldsymbol{V_{cb}} \ oldsymbol{V_{cb}} & oldsymbol{V_{cb}} \ oldsymbol{V_{cb}} \$$

◆ Members of the BNL high-energy theory group are currently working on the quantities that are circled in PINK

Lattice QCD inputs to the unitarity triangle

- Many constraints on the unitarity triangle require lattice QCD calculations of hadronic weak matrix elements
- ♦ Members of the BNL high-energy theory group are currently computing several key inputs:

f_K/f_{π} (RBC/UKQCD)

- ♦ The ratio f_K/f_{π} allows a precise determination of $|V_{ud}|/|V_{us}|$ [Marciano]
- ◆ In the past year, RBC/UKQCD have added data at a second lattice spacing and reduced their errors significantly

New preliminary result is competitive with other three-flavor lattice calculations

$K \rightarrow \pi \ell \nu$ semileptonic form factor (RBC/UKQCD)

- ♦ Experiments measure the product of the form factor times the relevant CKM matrix element, $f_{+}(0) \times |V_{us}| = 0.2166(5)$, to 0.2% accuracy
 - \bullet \Rightarrow Need lattice calculation of form factor to obtain $|V_{us}|$
- ♦ In 2008, the RBC/UKQCD Collaborations published the first realistic calculation of the K→πlυ form factor which includes the effects of the u, d, and s "sea" quarks

◆ Leads to the current best determination of the CKM matrix element | V_{us} | with a total error of 0.6%

Neutral kaon mixing parameter B_K

- ullet The amount of direct CP-violation in the neutral kaon system, ϵ_K , is known to subpercent precision, and constrains the apex of the CKM unitarity triangle
- \bullet Until recently, the uncertainty in the ε_K band was primarily due to the uncertainty in lattice QCD calculations of the hadronic matrix element B_K

- * 2007: RBC/UKQCD published the first precise three-flavor lattice calculation of Bk with a 6% accuracy
- May 2009: Aubin, Laiho, and RV obtained the first three-flavor lattice determination from data at two lattice spacings with a ~4% error
- The independent result of ALVdW using a different lattice formulation confirmed that of RBC/UKQCD
- Lattice 2009: RBC/UKQCD presented a preliminary result obtained from two lattice spacings with a reduced ~4% error

Status of B_K constraint on the unitarity triangle

• Given the improved recent lattice determinations of B_K there is a 2-3 σ tension between the E_K band and the other UT constraints [Lunghi & Soni 2008]

* May be a hint of new physics in neutral kaon mixing...

K→ππ decay (RBC/UKQCD)

- ♦ Origin of $\Delta I=1/2$ rule (A₂/A₀ ~ 1/22) is a long-standing puzzle in particle physics
- → May be particularly sensitive to new physics because it receives contributions from 1-loop electroweak penguin diagrams

- ♦ Lattice calculation of direct CP-violation in K→ππ decays, $ε_{K'}$, is technically challenging and has not been done for three dynamical quark flavors, so RBC & UKQCD are currently undertaking a major study of K→ππ decay
- ◆ Members of BNL high-energy involved in mentoring Columbia students Q. Liu and M. Lightman on this project

The B $\rightarrow \pi \ell \nu$ form factor (RV for FNAL/MILC)

- Given the experimental branching fraction for $B \rightarrow \pi \ell \nu$ semileptonic decay, lattice calculations of the hadronic form factor allow a determination of |Vub|
- In 2009, the Fermilab Lattice & MILC Collaborations published the best 3-flavor calculation of the $B \rightarrow \pi l \nu$ semileptonic form factor and exclusive $|V_{ub}|$
- Fitting the BABAR experimental and lattice data simultaneously to a model-independent fit function based on analyticity and crossing symmetry minimized the error in |Vub| (~11% uncertainty)
- Result consistent with previous exclusive determinations, but a $1-2\sigma$ tension persists between the inclusive and exclusive determinations

FPCP 2009

Neutral B-meson mixing (RBC/UKQCD)

- ullet Combining the ratio of neutral B-mixing matrix elements (ξ) with exp. measurements of the B_d and B_s oscillation frequencies constrains the apex of the CKM unitarity triangle
- \star Since the constraint from B-mixing is perpendicular to that from sin (2 β), B-mixing plays a key role in searching for new physics in the flavor sector
- \bullet Both unquenched lattice calculations of ξ use staggered light quarks, so it is important to have an independent cross-check using different light-quark and b-quark formulations
- We are calculating ξ with domain-wall light quarks and static b-quarks (publication in preparation)
 - Will reduce the statistical and systematic errors in a subsequent publication and expect to obtain a competitive final result

Just the beginning of a larger RBC/UKQCD program in heavy-light physics that will extend to D- and B-meson decay constants and other quantities of interest to CKM phenomenology . . .

Summary and outlook

- ◆ Members of the BNL high-energy theory group are computing several of the most important weak-matrix elements for CKM phenomenology
 - Already well-established program in kaon physics has lead to the current best calculations of the $K \rightarrow \pi \ell \nu$ form factor and neutral-kaon mixing parameter B_K
 - Now turning our attention to the more challenging target of $K \rightarrow \pi\pi$ decay
 - Also beginning a program in heavy-light physics needed to extract CKM matrix elements involving b- and c-quarks
 - Will publish our first heavy-light phenomenology result for neutral B-meson mixing soon
- \bigstar Although no "smoking gun" of new physics in the flavor sector, there are several hints that one should keep an eye on, such as the tension between the $ε_K$ band and the remaining CKM unitarity triangle constraints
- ◆ Lattice QCD at BNL is poised to play a key role in discovering new physics in the flavor sector!